Inductive machine learning for improved estimation of catchment-scale snow water equivalent
نویسندگان
چکیده
Infrastructure for the automatic collection of single-point measurements of snow water equivalent (SWE) is well-established. However, because SWE varies significantly over space, the estimation of SWE at the catchment scale based on a single-point measurement is error-prone. We propose low-cost, lightweight methods for near-real-time estimation of mean catchment-wide SWE using existing infrastructure, wireless sensor networks, and machine learning algorithms. Because snowpack distribution is highly nonlinear, we focus on Genetic Programming (GP), a nonlinear, white-box, inductive machine learning algorithm. Because we did not have access to near-real-time catchment-scale SWE data, we used available data as ground truth for machine learning in a set of experiments that are successive approximations of our goal of catchment-wide SWE estimation. First, we used a history of maritime snowpack data collected by manual snow courses. Second, we used distributed snow depth (HS) data collected automatically by wireless sensor networks. We compared the performance of GP against linear regression (LR), binary regression trees (BT), and a widely used basic method (BM) that naively assumes non-variable snowpack. In the first experiment set, GP and LR models predicted SWE with lower error than BM. In the second experiment set, GP had lower error than LR, but outperformed BT only when we applied a technique that specifically mitigated the possibility of over-fitting. 2015 Elsevier B.V. All rights reserved.
منابع مشابه
تهیه نقشه رقومی آب معادل برف با استفاده از پارامترهای ژئومرفومتری و روش شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز سخوید)
Although a small portion of the Earth's surface is covered by the mountains, but it has a large impact on watershed hydrological perspective Because of the water crisis in arid and semi-arid regions of Iran, monitoring of the amount of snow in these areas is very important. Usually, access to the spatial distribution of snow water equivalent is limited to small scale using sampled data. However...
متن کاملSnow Water Equivalent Retrieval Using Delta-k Insar Repeat Pass Processing of Envisat Asar Data
Estimation of total snow mass by means of SAR interferometry is problematic, due to high sensitivity of the interferometric phase to the snow water equivalent, leading to the phase unwrapping problem. In this paper, we pursue a recently proposed technique, delta-k interferometric phase estimation, that avoids phase wrapping by lowering the sensitivity of the interferometric phase to the snow wa...
متن کاملمحاسبه تغییرات نقشههای پوشش برفی تهیه شده از تصاویر ماهوارهای MODIS در دورههای فاقد تصویر
Snow is a huge water resource in most parts of the world. Snow water equivalent supplies 1/3 of the water requirement for farming and irrigation throughout the world. Water content estimation of a snow-cover or estimation of snowmelt runoff is necessary for Hydrologists. Several snowmelt-forecasting models have been suggested, most of which require continuous monitoring of snow-cover. Today mo...
متن کاملمحاسبه تغییرات نقشههای پوشش برفی تهیه شده از تصاویر ماهوارهای MODIS در دورههای فاقد تصویر
Snow is a huge water resource in most parts of the world. Snow water equivalent supplies 1/3 of the water requirement for farming and irrigation throughout the world. Water content estimation of a snow-cover or estimation of snowmelt runoff is necessary for Hydrologists. Several snowmelt-forecasting models have been suggested, most of which require continuous monitoring of snow-cover. Today mo...
متن کاملSensitivity Analysis of Machine Learning in Brightness Temperature Predictions over Snow-coverd Regions Using the Advanced Microwave Scanning Radiometer
Title of Document: SENSITIVITY ANALYSIS OF MACHINE LEARNING IN BRIGHTNESS TEMPERATURE PREDICTIONS OVER SNOW-COVERD REGIONS USING THE ADVANCED MICROWAVE SCANNING RADIOMETER Yuan Xue, Master of Science, 2014 Directed By: Assistant Professor, Barton A. Forman Department of Civil and Environmental Engineering Snow is a critical component in the global energy and hydrologic cycle. Further, it is imp...
متن کامل